
<Insert Picture Here>

MySQL Cluster –
Performance Tuning
Johan Andersson
Principal Field Technologist

The presentation is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

•  MySQL Cluster is designed for
•  Short transactions
•  Many parallel transactions

•  Utilize Simple access patterns to fetch data
•  Solution that scales!

•  Analyze what your most typical use cases are
•  optimize for those

Overall design goal
Minimize network roundtrips for your

most important requests!

General Design Principles

•  Application spaces where Cluster is being used heavily
•  Subscriber databases (telecom)
•  Session management
•  Online gaming
•  Finance
•  E-commerce
•  As a Shard catalog in web 2.0 shops

•  The key denominator for all these applications are:
•  high throughput, low response times, high-availability, and

simple access patterns.

•  Reporting is typically performed on a subsystem
•  Replicate to a slave (e.g, MYISAM or INNODB database)

General Design Principles

Schema
Optimization

Query Tuning

Parameter
Tuning

Network / OS
Tuning

Hardware
Tuning

• De-normalization
• Optimize data types

• Batching
• Rewrite slow queries
• Index Tuning

• Use a good Configuration (affects mostly stability)
• Mainly MySQL server parameters

• Tune Network (TCP) buffers (not the scope of this presentation)
• Cluster Interconnects

• Faster CPU/Disk (not the scope of this presentation)

Tuning Options

•  Enable the slow query log!
•  set global slow_query_log=1;

•  set global long_query_time=3; //3 seconds

•  set global log_queries_not_using_indexes=1;

•  Slow queries will be written in the slow query log:
 mysql> show global variables like 'slow_query_log_file';

 +---------------------+------------------------------+

 | Variable_name | Value |

 +---------------------+------------------------------+

 | slow_query_log_file | /data1/mysql/mysqld-slow.log |

 +---------------------+------------------------------+

 1 row in set (0.00 sec)

•  Slow Queries will be written in plain text.
•  Or use MEM (but MEM cannot monitor data nodes)

Detecting Problems – PT 101

BEGIN
1.  Start by analyzing the slow query log

Change long_query_time if needed

2.  Use EXPLAIN to figure out if the query is
•  Using the correct indexes
•  JOINing the tables in the wrong order
•  so bad it needs to be rewritten.

3.  Re-run the optimized typical use cases using
mysqlslap

4.  GOTO BEGIN;

END;
•  Other tools such as mysqlsla can also be used
•  Performance tuning is a never-ending task.
•  Never tune unless you can measure and test
•  Don't optimize unless you have a problem

Detecting Problems – PT 101

Schema
Optimization

Query Tuning

Parameter
Tuning

Network / OS
Tuning

Hardware
Tuning

• De-normalization
• Optimize data types

• Batching
• Rewrite slow queries
• Index Tuning

• Use a good Configuration (affects mostly stability)
• Mainly MySQL server parameters

• Tune Network (TCP) buffers (not the scope of this presentation)
• Cluster Interconnects

• Faster CPU/Disk (not the scope of this presentation)

Tuning Options

Schema Optimization - Data Types

• Denormalize tables
•  Tables having the same PRIMARY KEY can be denormalized

• Change Data Types
•  Does an EMAIL need to be a TEXT?

Schema Optimization -
Denormalization

• Two tables with the same PRIMARY KEY can be
denormalized into a single table:

•  Requires two roundtrips to get data

• Denormalize:

• USER_SVC_VOIP • USER_SVC_BROADBAND

• USER_SVC_VOIP_ BB

Schema Optimization -
Denormalization

•  Normalized:
•  SELECT * FROM
USER_SVC_BROADBAND AS bb, USER_SVC_VOIP AS
voip
WHERE bb.id=voip.id AND bb.id=1;

•  Total throughput = 12623.09 tps
•  Average response time=658us

•  Denormalized:
•  SELECT * FROM USER_SVC_VOIP_BB AS bb_voip
WHERE bb_voip=1;

•  Total throughput = 21591.64 tps
•  Average response time=371us

Schema Optimization – Data Types

•  BLOB/TEXT columns are stored in an external
hidden table.
•  First 255B are stored inline in main table
•  Reading a BLOB/TEXT requires two reads
•  Read without lock will be upgraded to shared lock!

•  Reading/Writing a VARCHAR/VARBINARY is less
expensive.

•  Change to VARBINARY/VARCHAR if:
•  Your BLOBs/TEXTs can fit within an 8052B record (and

you need a 4B PK as well)
•  (record size is currently 8052 Bytes)

Schema Optimization – Data Types

•  SELECT data1, data2 FROM t1 WHERE
id=<rand>
•  sizeof(data1) = 1024B, sizeof(data2) = 1024B.

•  1 App - 8 Threads , 1 MySQLD, 2 Data nodes
•  data1 and data2 represented as BLOBs

•  5844 TPS
•  data1 and data2 represented as VARBINARYs

•  19206 TPS

•  Note 1: BLOB/TEXT are also more expensive in Innodb as BLOB/
TEXT data is not inlined with the table. Thus, two disk seeks are
needed to read a BLOB.

•  Note 2: We recommend (for any storage engine) to store images,
movies etc outside the database on the filesystem.

Schema Optimzation - PK selection

• Engineer your schema for the problem you need to
solve!
•  Call setup? Locate all friends of a user?

• Very common…

• Better:
•  Introduce PK <USER_ID, FRIEND_ID>
•  Get rid of column ID
•  Get rid of the UNIQUE (as it is now the PK)

ID (auto_inc) USER_ID FRIEND_ID
1 10001 11000
2 10001 11001
3 10001 11002
4 10002 12022

PK UNIQUE KEY

Schema
Optimization

Query Tuning

Parameter
Tuning

Network / OS
Tuning

Hardware
Tuning

• De-normalization
• Optimize data types

• Batching
• Rewrite slow queries
• Index Tuning

• Use a good Configuration (affects mostly stability)
• Mainly MySQL server parameters

• Tune Network (TCP) buffers (not the scope of this presentation)
• Cluster Interconnects

• Faster CPU/Disk (not the scope of this presentation)

Tuning Options

Simple Access Patterns

•  Simple Access Patterns are key to build scalable and
high performing solutions (this is not subject to
Cluster only)
•  PRIMARY KEY lookups are done in constant time O(1

•  Fastest way to access data in MySQL Cluster
•  INDEX searches are done in O(log n) time.
•  JOINs are ok if you understand what can make them slow.

•  If your most important requests are 10-way JOINs with
huge result sets then Cluster may not be for you.

•  Or use scale out (write to cluster read from innodb): http://
johanandersson.blogspot.com/2009/05/ha-mysql-write-scaling-
using-cluster-to.html

Operation Cost

•  Cost of typical operations (depends on HW/Network)

•  Synchronous replication adds ~2.1x - 2.8x for writes
compared to reads

•  Index scan takes 2.4x longer than PK read
•  Test was with 8 threads connecting to one mysqld
•  'bencher' was used to generate the load. (Xeon 5160 @

3.00GHz)

Batching

• MySQL Cluster allows batching on
•  INSERT (PK)
•  Most PK UPDATE
•  DELETE (PK)
•  SELECT (PK and some INDEX scans and not in JOINs)

• Batching means
•  One transaction with >1 operation are executed in one round-

trip

Batching

• Example – Insert 1M records
•  No batching:

• INSERT INTO t1(data) VALUES (<data>);
•  Batching (batches of 16):

• INSERT INTO t1(<columns>) VALUES (<data0>),
(<data1>)..., (<data15>)

•  50 seconds to insert 1M records
•  15 times faster!

Batching
• Read 10 records services for a user:

•  PK is <userid, friend_id>

• Batching (batches of 10):
•  SELECT * FROM t1 WHERE user_id=1 AND friend_id IN
(1,2,3,4,5,7,8,9,10);

• 0.001s
• No batching:

• 10 x SELECT * FROM t1 WHERE user_id=1 AND
 friend_id={ id };

• 0.006s

Batching

• Another way – batching on different tables
SET transaction_allow_batching=1; /set on the

connection
BEGIN;
INSERT INTO user(uid, fname, lname, email) VALUES

(…);
10 x INSERT INTO service(uid, sid, data) VALUES

(…);
COMMIT;
•  The above will be executed in one batch (one roundtrip)

• transaction_allow_batching=0: 1223 TPS
• transaction_allow_batching=1: 2204 TPS (80% faster)

• Batching using transaction_allow_batching
does not work with
•  UPDATE .. SET X=X+1 .. , JOINs, REPLACE

Efficient Scanning – Partition Pruning

•  Scanning only one partition is sometimes better than
scanning all partitions (all nodes).
–  By default, all index scans hit all data nodes – good if big

result set.
–  User-defined partitioning can help to improve equality index

scans on part of a primary key.
–  CREATE TABLE user_friends (user_id,

 friend_id,
 data,
 PRIMARY KEY(user_id, friend_id))
 PARTITION BY KEY(user_id);

•  All data belonging to a particular user_id will be on the same
partition.

–  SELECT * FROM user_friends WHERE user_id=1;
•  Only one data node will be scanned (no matter how many nodes

you have)

Efficient Scanning – Partition Pruning
•  You can verify if you got it correct checking the

Ndb_pruned_scan_count status variable
•  Increases when a pruned scan occurs

mysql> select * from user_friend where user_id=1;

mysql> show global status like
'ndb_pruned_scan_count';

+-----------------------+-------+

| Ndb_pruned_scan_count | 1 |

+-----------------------+-------+

1 row in set (0.00 sec)

Efficient Scanning – Partition Pruning

•  Partition Pruning is better up to a certain point
–  Depends on number of data nodes and records retrieved

 (shorter bars are better)

Query Optimization – JOINs

•  JOINs are executed in the MySQL server.
•  The OPTIMIZER in MYSQL only knows one

algorithm
–  Nested Loop Join
–  This algorithm is not brilliant in its effectiveness

•  If we have the following query:
–  SELECT fname, lname, title
FROM a,b
WHERE b.id=a.id AND a.country='France';

• Author a • AuthorBook b

Query Optimization - JOINs

•  SELECT fname, lname, title FROM a,b WHERE
b.id=a.id AND a.country='France';

•  1. Index scan left table to find matches.
•  2. For each match in 'a', find matches in 'b'

•  In this an index scan on the right table on b.id for each
matching record in 'a’

•  This could be very expensive if there are many records
matching a.country='France'

• Author a • AuthorBook b

1 2

Query Optimization - jOIN

•  The main performance limiter for JOINs are
–  Number of tables in JOIN
–  Number of Records matching the JOIN criteria

•  In general
–  JOINs are limiting scalability even for INNODB/MYISAM

•  It is a complex access pattern
–  JOINs should be as simple as possible

•  WHERE – conditions should be as limiting as possible
•  Consider this:

•  Every inspected record costs about 200us for a PK join
•  A join hitting 2000 (2000 x 200 us) records → 0.4seconds
•  A join hitting 2 000 000 records → 40 seconds

–  Using SCI/DX can help a lot as JOINs are subject to network
latency that is problematic.

Query Optimization - jOIN

• Make sure the tables are joined in the correct order
•  Check with EXPLAIN!
•  Sometime the order is screwed up
•  Make sure you have the necessary indexes
•  Make sure tables are JOINed with the table having the best/

most conditions comes first in the JOIN.
•  Preferably take the smallest table first in the JOIN
• STRAIGHT_JOIN can help a lot

Query Optimization - SUB-SELECT

• Rewrite SUB-SELECTS as JOINs
• SELECT x FROM t1 WHERE t1.id IN
(SELECT t2.id FROM t2 WHERE t2.y>10

Becomes
• SELECT x FROM t1,t2 WHERE t1.id=t2.id AND
t2.y>10;

Indexes

•  Don't trust the OPTIMIZER!
•  Statistics gathering is very bad
•  Optimizer thinks there are only 10 rows to examine in each

table!

•  If you have two similar indexes on a table
•  index(a)

•  index(a,ts)

•  Use FORCE INDEX to use the correct index
•  Don’t use USE INDEX!

•  Check with EXPLAIN!

Schema
Optimization

Query Tuning

Parameter
Tuning

Network / OS
Tuning

Hardware
Tuning

• De-normalization
• Optimize data types

• Batching
• Rewrite slow queries
• Index Tuning

• Use a good Configuration (affects mostly stability)
• Mainly MySQL server parameters

• Tune Network (TCP) buffers (not the scope of this presentation)
• Cluster Interconnects

• Faster CPU/Disk (not the scope of this presentation)

Tuning Options

Parameter Tuning –
ndb_cluster_connection_pool

•  Problem:
•  A mutex on the connection from the mysqld to the data

nodes prevents scalability.
•  Many threads → contention on the mutex
•  Must have many mysqld processes running...

•  Solution:
•  Ndb_cluster_connection_pool (in my.cnf) creates

more connections from one mysqld to the data nodes
•  One free [mysqld] slot is required in config.ini for each

connection.

•  Threads load balance on the connections→ less
contention on mutex → increased scalabilty

Parameter Tuning –
Ndb_cluster_connection_pool

•  Gives at least 70% better performance
•  >70% better perf
• Ndb_cluster_connection_pool=2x<CPU
cores> is a good starting point.

• www.severalnines.com/config allows you to specify
this

Parameter Tuning – auto_increments
•  A range of auto_increments are cached in the

MySQL Server
•  ServerA gets 1..1024 , serverB gets 1025-2048
•  When out of values in range → go to data nodes, lock, fetch

next range, unlock → serialization!
•  ndb_autoincrement_prefetch_sz=1 (default - too

small)
•  Must fetch new ranges all the time from data nodes! Round-

trip!

•  16 BATCHED INSERTS / 8 THREADS / 1 APP
Default=1: 1211.91TPS
256: 3471.71TPS
1024 : 3659.52TPS

•  Increase ndb_auto_increment_prefetch_sz depending
on INSERT load.

Parameter Tuning - Misc

• Don't forget to set:
•  thread_cache_size = <max_connections>
•  table_open_cache=512

• Use SHOW GLOBAL STATUS;
•  If Threads_created increases -> increase thread_cache_size!
•  If Opened_tables increases -> increase table_open_cache!

• Please note that www.severalnines.com/config sets
great default values! (the best in the industry actually)

Schema
Optimization

Query Tuning

Parameter
Tuning

Network / OS
Tuning

Hardware
Tuning

• De-normalization
• Optimize data types

• Batching
• Rewrite slow queries
• Index Tuning

• Use a good Configuration (affects mostly stability)
• Mainly MySQL server parameters

• Tune Network (TCP) buffers
 (not the scope of this presentation)
• Cluster Interconnects

• Faster CPU/Disk (not the scope of this presentation)

Tuning Options

Network – Cluster Interconnects
•  Cluster Interconnects

•  Instead of spending $$$ on application tuning/development
•  Also great for DRBD!

•  DX (SCI) is a Cluster Interconnect offering:
•  High Bandwidth (20 Gb/sec full duplex), Low latency (<2us)
•  Offers a socket interface – any socket based application

benefits from it
•  10 Gig-E form factor on cabling
•  Seamless fallback to Gig-E

•  >2x more performance just plugging it in.
•  DXH510 PCI Express Host Adapter (600USD list price Oct

2008) DXS410 DX 10 Port Switch (4200USD list price Oct
2008)

•  Read more at http://www.dolphinics.com

Other things

•  Make sure you never:
•  Run in SWAP – the data nodes will be sub-performing and

you will have an unstable system.

•  Make sure you do:
•  Lock data nodes threads to CPUs not handling interrupts for

ETH.
•  Vm.swappiness=0
•  Mount with noatime
•  On SUN CMT (T5240 etc) it is very important to create

processor sets and bind interrupt handling to particular Core
(HW Thread)

Tools

• Third party tools at www.severalnines.com
•  Configurator

•  Uses best practices for setting up a good config.ini and
my.cnf

•  Scripts to control cluster from one single location.
•  CMON – Cluster Monitor

•  Monitor X number of Clusters (and mysqld statistics) from
a single web interface

•  Sizer – Capacity Planning
•  Sandbox – Development package (localhost) for Cluster

Questions?

THANK YOU!

Johan.Andersson@sun.com
www.severalnines.com
johanandersson.blogspot.com

